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요 약

Climate downscaling is an important technique in climate research that projects low-resolution (LR) climate data to
high-resolution (HR). Prior research has shown deep learning to be an effective technique for climate downscaling. However,
most of the deep learning models for climate downscaling are fully supervised and require large amounts of high-resolution
(HR) data for training, which is rarely available in practice. Additionally, the focus of these models is mostly on learning the
spatial dependencies between the weather variables, whereas temporal information is generally ignored. In order to tackle these
problems, this paper proposes a self-supervised convolutional neural network (CNN) model for downscaling climate data. We
use a self-supervised learning setting that has no dependency on high-resolution (HR) data and incorporates the temporal
climate variability into the model using a long short-term memory (LSTM) network. The proposed model is evaluated using
precipitation and surface temperature data from the Community Earth System Model (CESM) v1.2.2 simulation. Results show
significant improvements over existing baselines, demonstrating the effectiveness of capturing spatio-temporal dependencies in
downscaling climate data.

1. Introduction
The Earth's climate is changing rapidly, and its impact on the planet

is becoming increasingly apparent. To mitigate the effects of climate
change, researchers must understand the mechanisms behind climate
variability and predict future climate patterns. One of the major
challenges in climate research is the ability to accurately project global
climate data to a regional or local scale, which is known as "climate
downscaling." There are two kinds of downscaling methods: dynamical
downscaling and statistical downscaling. Dynamical downscaling
employs high-resolution (HR) regional climate models to mimic the
interactions between the atmosphere, land, seas, and other climate
variables. This technique provides a more comprehensive depiction of
local climate conditions, but it requires a substantial amount of
computational power [1]. On the other hand, statistical downscaling
utilizes climate data to find statistical relationships between HR climate
models and observed local climate states. However, conventional
statistical methods fail to capture the complex relationships between
global and local climate patterns and interactions between different
climate variables. This statistical downscaling can be considered a
super-resolution (SR) task in computer vision research. While the SR
task enhances the resolution of low-resolution images, statistical
downscaling improves the resolution of coarse climate data.
Previous studies have shown deep learning to be a promising

approach for downscaling climate models. Vandal et al. used a deep SR
convolutional neural network (SRCNN) method to downscale climate
variables [2]. Other studies have also used other deep learning models
such as GAN, LSTM, and other deep neural network-based methods to
generate climate data on a local scale by incorporating climate-physics
properties into their models [3, 4, 5]. However, all such models are
fully supervised and typically require large amounts of HR ground
truth data, which is computationally expensive and difficult to obtain.
Furthermore, only a few of the prior studies have incorporated the
temporal aspect of the climate data, which dynamically evolves over

Figure 1. A three-day snapshot of total precipitation (PRECT) over the
North America region. The temporal evolution can be clearly observed.

time, as illustrated in Figure 1.
This paper presents a self-supervised CNN model for downscaling

climate variables, given that no HR climate data is available for model
training. The proposed model uses a self-supervised learning setting
that downscales specific LR data points by learning their characteristics
at the runtime. Moreover, the proposed model also incorporates
temporal variability into our model by employing an LSTM network to
capture the time-varying dynamics of the weather variables. We
evaluate our model by downscaling total precipitation (PRECT) and
surface temperature (TS) from the Community Earth System Model
(CESM) v1.2.2 into 2x and 4x scale factors. To the best of our
knowledge, this is the first study to investigate temporal information
for a self-supervised climate downscaling model. The results obtained
show substantial improvements in the performance compared to
existing baselines, indicating that capturing the spatio-temporal
dependencies is a promising approach for downscaling the climate
data.

2. Methods
As the HR, or LR-HR paired climate data, is challenging to obtain

due to the enormous computational complexity involved in the HR
simulations, we employ a self-supervised setting for model training that
has no dependency on the HR data. Given a model input at specific𝑋
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time t, we generate pseudo-LR data (d = downgrading factor) by𝑋
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Figure 2. The overall architecture of the proposed model. A sequence of LR
data points ( ) is passed to the model, yielding a downscaled𝑋
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as depicted in Figure 2.

2.1 Convolutional LSTM
We employ a convolutional LSTM (ConvLSTM) network to handle
number of spatial data , recorded up to time𝑛 𝑋
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periodically [4, 6]. The LSTM can maintain temporal context in its
current memory state . Then, the memory state will be propagated𝐶
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through controlling gates to its hidden state . The formula for a𝐻

𝑡
ConvLSTM cell at time is defined as follows:𝑡
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where , , are input, forget, and output gates; are bias vectors;𝑖
𝑡

𝑓
𝑡

𝑜
𝑡

𝑏 𝑊
are weight matrices; represents sigmoid function; denotes theσ ∗
convolution operation; and denotes Hadamard product. We then⊙
stack two ConvLSTM cells to encode more complex dynamical
patterns in the spatio-temporal space of the climate data [6].

2.2 Super-resolution (SR) Network
The intermediate hidden state from the last ConvLSTM layer is then

passed to our super-resolution (SR) network. We adopt SRResNet [7]
as the network’s backbone, with 32 channels and 8 ResNet blocks, and
two CNN layers subsequently. The CNN layers in our downscaling
network are designed to maintain the size of input data. The
downscaling network operations are described as follows:
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where is an instance normalization layer, is a CNN layer, and𝐼𝑁 𝐶𝑂𝑁𝑉
is the output of the downscaling network with scale factor.𝑋
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2.3 Self-Supervised Learning
As discussed before, obtaining real LR-HR data is challenging in

practice. Motivated by [8] and [9], we generate pseudo-LR and
pseudo-HR for each instance, train a fresh model on the pseudo pair,
and finally, perform model inference on LR data to generate the

downscaled HR data. The intention behind this is to make the model
learn the internal structure of the specific instance [8]. We synthesize
the LR data at timestep , , from the original HR data at timestep ,𝑡 𝑋
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where MSE is an element-wise mean squared error. The inference of
the model can be performed by passing the LR input data (pseudo-HR),
, to the trained model, which produces the final output,𝑋
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evaluating the root mean squared error (RMSE) as follows:
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3. Experiment and Evaluation
3.1 Data and Temporal Settings
We used CESM v1.2.2 HR climate simulation data (𝑋

𝑡
𝐻𝑅 ∈ ℝ𝐶×𝐻×𝑊)

for the present-day condition of daily means over the North America
region for 20 years (N = 20 x 365 = 7300). The dataset is configured
sequentially in time. Each data point has a resolution of 213 321, with×
each pixel representing ~25 km grid resolution. Surface temperature
(TS), total precipitation (PRECT), and gradient of topography (dPHIS)
are the three climate variables that are used as the model's input data
channels. The LR data is synthesized by bicubic(𝑋

𝑡
∈ ℝ𝐶×𝐻'×𝑊')

interpolation from the HR data into a coarser resolution ,(𝐻' × 𝑊')
and rescaled to the target output size by applying bicubic(𝐻 × 𝑊)
interpolation before proceeding to the model’s input. We downscale
PRECT and TS, as dPHIS remains constant during the simulation time.

3.2 Experiment Setup
As described in Section 2.3, we train a new model for every data

instance at runtime. We use LeakyReLU with a negative slope of 0.2,
instance normalization, the Adam optimizer, uniform convolution
kernels of size 3, and padding and stride of 1 throughout the
downscaling network. The model is run for 3000 epochs at a learning
rate of 1E-4. The same ResNet backbone and self-supervised setting
are used for all models and baselines. We evaluate the model by
downscaling 500 data points from the CESM v1.2.2 climate simulation
data (500 data points with the shape ). For each target3 × 213 × 321
LR data point, two prior data points are utilized to extract the temporal
information. The model's performance is measured by calculating the
root mean squared error (RMSE) by comparing the model output and
the original HR data over 2x and 4x scale factors.

3.3 Results and Discussion
Table 1 shows the model performance of downscaling PRECT and

TS data for 2x and 4x scale factors. We evaluated the model against
bilinear and bicubic interpolation, SRResNet with 2D and 3D
convolution, and ours in a supervised setting. Bilinear and bicubic
interpolation are widely used as conventional downscaling methods.
SRResNet is a ResNet-based deep learning model for the SR task.
Moreover, to incorporate temporal information, we additionally
implemented SRResNet with 3D convolution. Bilinear, bicubic, and



Figure 3. Visual examples of total precipitation (PRECT) from LR input, ground truth, bilinear, bicubic, SRResNet (2D), SRResNet (3D), Ours-SL (supervised
learning), and Ours (self-supervised learning) for the same data point. The differences are indicated in the red squares.

Table 1. The RMSE (lower is better) comparison of conventional methods and
deep learning models for 2x and 4x (units are 1e-8 for PRECT).

Model
2x 4x

TS PRECT TS PRECT

Spatial
Bilinear 0.6741 1.9102 0.8791 3.1666
Bicubic 0.6936 1.8549 0.8803 3.1916

SRResNet (2D) 0.5178 1.1697 0.8119 3.0708

Spatio-temporal
SRResNet (3D) 0.5433 1.1560 0.8240 3.0676

Ours-SL 0.4583 1.1437 0.8391 2.7912
Ours 0.4389 1.0653 0.7777 3.0417

SRResNet (2D) represent spatial models, while SRResNet (3D) and
our models constitute spatio-temporal models. It is evident that our
model outperforms baselines for both scale factors. In the 2x scale
factor, our model improves the performance by reducing the RMSE
with 29.85% (TS) and 46.87% (PRECT) decreases over the bicubic,
and 20.32% (TS) and 8.96% (PRECT) decreases over the SRResNet
(3D). Moreover, our model has better performance than Ours-SL
(trained with HR data in a supervised setting) and the SRResNet (2D).
The superior performance of our model highlights the importance of
utilizing temporal information for the downscaling task. Similar
performance improvements are also observed in the 4x scale factor,
albeit our model in supervised setting is able to learn more for PRECT.
We further explored the number of prior data points used as the

temporal information for the target data point, as presented in Figure 4.
Due to the computational bottleneck, the results presented here are for
200 data points. The figure illustrates that our model consistently
outperforms the SRResNet (2D). Although the performance improves
when previous temporal points are provided (compare when 𝑁 > 0
and ), an increase in the number of prior data points led to an𝑁 = 0
increase in the RMSE value. This indicates that while the immediate
past data may be informative for downscaling the target data point, the
distant ones may possess weak correlations with the target data point.

4. Conclusion and Future Work
In this paper, we propose a self-supervised spatio-temporal deep

learning model that can effectively downscale climate variables using
only low-resolution (LR) climate data. Our model incorporates
temporal dynamics by employing an LSTM network, and we
demonstrate its effectiveness by extensive evaluations on total
precipitation (PRECT) and surface temperature (TS) variables obtained
from the Community Earth System Model (CESM) v1.2.2. The
proposed method offers a promising approach for downscaling climate
data. It also indicates the efficacy of incorporating spatio-temporal
dependencies in downscaling climate data. Future work could explore
the use of other deep learning backbones and more datasets to provide
further insights and improvements to our proposed model. This study
stimulates further climate research explorations, such as predicting
future climate patterns and mitigating extreme future climate events.

Figure 4. Performance comparison of Ours and SRResNet (2D) for TS and
PRECT in the 2x scale factor over a number of prior data points.
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